
Use of Data Flow Diagrams for Building Process with 

Message Passing: A Parallel Design Proposal 

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, 

Jesús Alberto Islas Fuentes 

Benemérita Universidad Autónoma de Puebla,  

Facultad de Ciencias de la Computación, 

Mexico 

{rossainz,mtovar}@cs.buap.mx, 

{nalle.ml29, albertisfu}@gmail.com 

Abstract. The present work shows a method to design parallel programs with 

message passing using Data Flow Diagrams (DFDs), which are graphs that are 

used within the classic structured design of Software Engineering. It shows the 

modification and semantic adaptation of the graphic elements of the DFDs to the 

semantics of the elements that are used in the passing of messages of the 

concurrent / parallel programming to map the processes, communication 

channels, geometric parallelism, parallel composition, generalization , 

specialization and nesting of processes to the graphic elements of DFDs so that 

the design made with them turns out to be a transparent design in the coding of a 

parallel system that uses processes, communication channels, composition and 

process nesting. The complete parallel design assisted with DFDs of an 

application called Parallel Generator of Natural Numbers is shown to 

demonstrate the usefulness of the proposal. 

Keywords. Data flow diagram, parallel programming, message passing, 

distributed memory, parallel design, structured design. 

1 Introduction 

There is interest by a large part of the community dedicated to computational discipline, 

to develop increasingly powerful systems taking advantage of the benefits of current 

computer architectures. The most important approach in the development of such 

systems is the use of parallel programming at various levels 

Parallel systems are found today in practically every type of device, not only in 

computers, the same are present in embedded devices in household appliances (screens, 

audio components, refrigerators, video players, etc.), than in supercomputers of 

institutes, universities, the army or government agencies [1]. 

115

ISSN 1870-4069

Research in Computing Science 149(4), 2020pp. 115–127; rec. 25-08-2019; acc. 18-09-2019

mailto:rossainz,mtovar%7d@cs.buap.mx


But the way in which this parallel software is developed in order to make efficient 

use of these components takes great relevance with respect to the parallel algorithms 

designed and implemented, adapting them to the different existing platforms. 

Within this area, the knowledge that is had on the concepts related to the design of 

programs and parallel algorithms takes great importance to implement efficient parallel 

programs in its logic, in its execution and in its performance. The parallel program 

design model adopted in this work is the so-called channel-process model [1]. This 

model consists of a parallel message passing architecture whose components are two: 

the processes that have tasks to be performed and the means of communication between 

said processes to share information through the concept of the channel [2]. A process 

consists of a sequential program to which a task is associated, a locality of non-shared 

local memory and a collection of ports of inputs and / or outputs that are the 

communication channels [3]. 

The channel used is a zero capacity storage structure (that is, only one piece of data 

travels through the channel, sent by one process to another that are connected to each 

other by the same channel; where a sending process sends a message through the shared 

channel and the receiving process receives it, so that while the message or data is within 

the channel, the sender will not be able to send any other data until he knows that the 

receiver has already received the message and the channel will be empty and ready to 

store another message of the same type as the previous one). A process that is connected 

to another through a communication channel and that is a receiver will be blocked in 

its execution if it tries to receive a message that has not yet been sent. In the same way 

the sending process will be blocked in its execution if when sending a message through 

its communication channel it has not been received by the receiving process. Therefore, 

the communication between the sending process and the receiving process through the 

communication channel is synchronous, thus generating the concept of rendezvous, [3].  

The classic design methodology for this type of parallel programming as indicated 

by [4] is the one proposed by Ian Foster: to divide the computation (tasks) and the data 

into pieces, determine the communication patterns between the tasks that they will be 

the processes, generate the composition of tasks / processes (nesting tasks) and assign 

each process to a processor or thread of execution. The idea is to divide data as 

independent as possible and then determine how many processes should be created and 

how to associate those processes with the data. A functional decomposition is generated 

that consists of dividing the total calculation into several processes and associating the 

data with them. There will be processes that can be divided into simpler processes 

generating more decompositions and there will be processes that can be joined and 

nested in a composition of more processes. The objective is to determine primitive 

processes that can no longer be divided and that indicate the starting point of the more 

general processes that make up the system, giving rise to a degree of fine or coarse 

parallelism; that depends on the problem to be solved and the input data [4]. Ideally, 

determine as many primitive processes as possible in order to maximize the degree 

of parallelism.  

Finally, the communication patterns between primitive and non-primitive processes 

must be determined through the creation of communication channels. 

116

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



The processes can carry out both their communications and the execution of their 

associated algorithms in parallel. If we analyze and relate the design methodology of 

Ian Foster with the method of use and creation of a data flow diagram or DFD we can 

see a one-to-one mapping of the components of the Foster methodology with the 

graphic components of the DFDs , so that this type of graphs can help the novel 

programmer in parallel to propose a good design of a parallel application. 

This is the proposal of this research work that is organized as follows: section 2 

shows the characteristics of DFDs, their components, the types of connections and how 

to build them, section 3 talks about parallel programming with message passing, section 

4 shows how to design a parallel system using DFDs and applies the methodology 

proposed in a case study, and finally in section 5 the conclusions and future work 

are shown. 

2 State of the Art 

According to [5] the design of a software system describes the organization of the 

system, expressed in terms of its components, the relationships between them, the 

relationships with its environment, and the fundamental principles that govern the 

design and evolution of the system. 

The design of a system focuses on what is known as "viewpoint", which is a form of 

abstraction that focuses on some specific aspects of the system, abstracting from the 

rest. As there are different viewpoint based on the generality and particularities that 

each software engineer uses to define a design, it is necessary to use unified graphic 

models that correctly represent the logical, process, development and physical point of 

view of scenarios etc., of the system to implement. In the case at hand, the viewpoint 

of the design of parallel applications using message passing can be unified with 

different graphic models, from contextual diagrams to represent the components that 

make up the system, generating a software architecture, to the use of diagrams of 

transition of states in UML, but without a doubt an ad-hoc graphic model for such a 

design is the use of Data Flow Diagrams (DFD's) that is used in the classic structured 

design of Software Engineering. 

Currently there are several works in the literature that make use of DFDs to show 

the design of the parallel systems that they propose. In [6] shows the Design of 

Applications in Distributed Systems with the two possible environments, conventional 

Operating Systems and the Internet, using DFDs to model the design of the concept of 

specialization of a service in the client-server architecture. In [7] the design and 

implementation of a distributed video on demand application based on the client-server 

architecture is shown, where it uses the DFDs to design the exchange of RTP and RTCP 

packets in the request of the video service. 

3 Data Flow Diagram (DFD) 

A DFD is a network-shaped diagram that represents the flow of data and the 

transformations that are applied to them when moving from the entrance to the exit of 

117

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069



a software system [8]. DFDs are commonly used to model the functions of a software 

system and the data flow between them at different levels of abstraction in a concept of 

structured design within software engineering. The software system is modeled through 

a set of level DFDs in which the upper levels define the system functions in general and 

the lower levels define these functions in detail [8]. 

3.1 Components 

− Procedures: They represent the functions of a software system. A process 

represents a function, procedure or operation system, that transforms the input 

data streams into one or more output streams [9]. Its graphic representation is 

a circle and inside it includes a number and the name that represents the 

function which must be unique within the DFD (see Fig. 1). 

− Storage: Represent the data stored in a specific structure such as a database 

or a file. A data storage represents system information stored temporarily or 

permanently [9]. The storage is a logical repository in the DFD that can 

physically represent a file, a database, a file cabinet drawer, etc. In a DFD 

there may be more than one different data storage. Its graphic representation 

is two parallel bars (see Fig. 1). 

− External Entities: They are the sources or destinations of the system 

information. It represents a source (generator) or destination (consumer) of 

information for the system but that does not belong to it [9]. It can represent a 

subsystem, a person, a department, an organization, etc., that provides data to 

the system or that receives it from it. They are represented in the DFD by a 

square with a representative name of the external entity inside (see Fig. 1). 

− Data Flow: they represent the information flows that flow between the 

functions of the system. It is a path through which data travels from one part 

of the system to another. They represent the moving data within the system. 

Data flows are the means of connection of the DFD components [9]. They are 

represented with directed arcs, where the arrow indicates the direction of the 

data, (see Fig. 1). 

Table 1 shows the connections allowed in DFDs [10]. 

 

Fig. 1. Graphical representation of the components of a DFD. 

118

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



3.2 Connections 

The Procedure-Procedure connection: The direct connection between two 

procedures through a data flow is possible if the information is synchronous, that is, 

that the target procedure begins at the moment when the source procedure ends its 

function. If this is not the case, it is necessary that there is a temporary storage that 

saves the data of the origin procedure [10, 11]. The target procedure will then capture 

this data when needed (see Fig. 2). The Procedure-Storage connection: There are 

different types of connections that can be made between procedures and storages in a 

DFD. The Fig. 3 illustrates the following cases: 

− Query Flow: shows the use of the storage information by the procedure for 

one of the following actions: use the values of one or more attributes of a 

storage occurrence or check if the values of the selected attributes meet certain 

criteria. 

− Update Flow: Indicates that the procedure will alter the information that is in 

the storage to: create a new occurrence of an existing entity or interrelation in 

the storage, delete one or more occurrences of an entity or interrelation and 

modify the value of an attribute. 

− Dialogue Flow: Between a procedure and a storage it represents at least one 

query flow and one update flow that have no direct relationship. Dialog flows 

are also used to simplify the interface between two components of a DFD. 

 

Fig 2. Procedure-Procedure Connection in a DFD. 

Table 1. Allowed connections between the components of a DFD. 

Destination/ 

Source 
Procedure Storage External Entitie 

Procedure TRUE TRUE TRUE 

Storage TRUE FALSE FALSE 

External Entitie TRUE FALSE FALSE 

119

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069



3.3 Construction 

The construction of a DFD is based on the principle of decomposition by levels of 

detail. The idea is to generate a model of a system represented by DFDs through layers. 

The decomposition by levels allows the system to be analyzed from the general 

scope to the detail through successive intermediate levels (top-down approach), 

according to. This form of design of a system provides us with a number of advantages: 

− it helps to build the specification from top to bottom,  

− the different levels can be addressed to different people,  

− independent functions of the system can be modeled at the same time,  

− it facilitates system documentation since each diagram can be explained 

separately.  

Thus, the decomposition of a process in a DFD produces another DFD (see Fig. 4): 

− Context Diagram: It is the highest level of the hierarchy in the design of a 

system. In this diagram there is only one procedure that represents the 

complete system. 

− System Diagram [LEVEL 0]: It is the decomposition of the DFD of the 

Context diagram into another DFD in which the main functions of the system 

or subsystems are represented. 

− Middle Level Diagrams [LEVEL 1, 2, 3, …]: These are the DFDs that result 

from the decomposition of each of the DFD procedures of the System Diagram 

into new diagrams that represent simpler functions. 

− Primitive Function Diagrams [Level n]: These are DFDs that represent 

functions that are detailed enough that the creation of new DFDs is 

not necessary. 

 

Fig. 3. Procedure-Store connection in a DFD. 

120

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



4 Parallel Programming with Message Passing 

The natural way to communicate and synchronize processes in this type of systems is 

using message passing: The processes exchange messages with each other through 

explicit send and receive operations that constitute the basic primitives of any system 

of communication of this type [12]. The fundamental elements involved in the 

communication in systems with message passing are: a sending process (transmitter), a 

receiving process (receiver), a communication channel (channel), the message to be 

sent/received (message) and operations of sending (send ()) and reception (receive ()), 

see Fig. 5. 

 

Fig 4. Decomposition by levels of a DFD. 

 
Fig 5. Message passing. 

121

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069



4.1 Types of Communication Between Processes 

It is the way in which the sender indicates to whom the message is addressed and vice 

versa, that is, the way in which the receiver indicates from whom he expects a message. 

We talk about direct or indirect communication [12]. 

− Direct-Symmetric Communication: It is characterized in that the sender 

explicitly identifies the recipient of the message in the sending operation. The 

receiver, in turn, identifies the sender of the message and establishes a 

communication link between them. 

− Direct-Asymmetric Communication: The sender continues to identify the 

receiver, but the receiver does not identify a specific sender. 

− Indirect Communication: The sender and receiver processes are not 

explicitly identified. Communication is done by depositing messages in an 

intermediate storage that is supposed to be known for processes interested in 

communication. That intermediate store is called the mailbox. 

− Indirect Communication with Channels: The sending and receiving 

operations are carried out through the specification of a channel 

(communication link), which generally has an associated type and on which 

only data of the same type can be sent. In addition, a channel cannot be used 

by multiple transmitters and receivers and is unidirectional. The concept of 

channel arises in languages like Occam and Pacal-FC. 

− Asynchronous Communication: The sender can carry out the sending 

operation without it being necessary to coincide in time with the receiving 

operation by the receiver. It is necessary to store the messages in buffers until 

the receiver removes them. 

− Synchronous Communication: The sending and receiving operations by 

senders and receivers must coincide in time, that is, the sender will be blocked 

in the send operation until the receiver is ready to receive the message, or vice 

versa, the receiver will be blocked in the receive operation until the sender 

sends the message. The processes will be blocked until the coincidence of both 

occurs in time (rendezvous). 

4.2 Channels and Messages 

− Data flow. Once a communication channel between sender and receiver is 

established, this, according to the flow of data that passes through it, can be of 

two types: unidirectional or bidirectional. For the first, information always 

flows in one direction between the two interlocutors, while for the second, 

information flows in both directions. 

− Channel capacity. It is the possibility that the channel has to store the 

messages sent by the sender when they are not received immediately by the 

receiver. The channels can be of zero capacity (where there is no buffer where 

messages are stored), channels of finite capacity (where the existing buffer has 

a fixed size) and channels of infinite capacity (where the buffer associated 

with the link of communication is assumed infinite in its capacity). 

122

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



− Message size. The messages that travel through the channel can be of fixed 

length or of variable length. 

− Channels with type or without type. Some communication schemes require 

defining the type of data that will flow through the channel, imposing the 

restriction of sending data only of the type for which the channel was declared. 

− Message passing by copy or by reference. Communication through message 

passing requires sending information between the processes involved in the 

communication. This can be done in two ways: make an exact copy of the data 

(message) that the sender wants to send from his address space to the address 

space of the receiving process (passing by copy or value) or simply send the 

recipient the address in the address space of the sender where the message is 

located (passing by reference). The latter requires that processes 

share memory. 

5 Designing a Parallel System with Data Flow Diagrams 

A parallel program consists of several processes that run at the same time [13]. A 

process is a sequential program in execution. The parallel program has control over its 

processes. Within the human cognitive aspect, the composition of processes through 

more processes, that is, through simple processes build more complex processes; It 

becomes natural when parallel programs based on distributed memory are developed 

[13]. The processes are highly independent because they are limited to the task they 

have to solve and provide the fundamentals of the program structure. In the field of 

object orientation, processes can be considered as active objects because they have the 

capacity to execute themselves. During the analysis phase of the development of a 

parallel software, the tasks to be performed by the program are determined, among 

other things [14]. 

However, it is in the design phase that these tasks are usually represented with 

graphic models that represent both the structure and semantics of the processes 

associated with the system and for this, we use activity diagrams, or state transition 

diagrams in the OO design. However, the structured design gives us through the data 

flow diagrams an important graphic model that we can adopt in the design of a parallel 

program with message passing in a completely transparent way. A data flow diagram, 

as defined in section 2, is a directed graph that can be adapted in the design of a parallel 

system to define processes, as well as the degree of parallelism that we intend to 

program by generating Intermediate level DFDs and program structure as a whole using 

the context diagram DFD.  

Each circle of a DFD model represents in the design of a parallel program with 

message passing a process or a control flow, while the arrows will now indicate the 

communication channels that the processes use to communicate with each other and 

thus define the flow of data or its express communication. The rectangles that represent 

external entities in the DFD will now represent processes of input or output of 

information that reach other processes modeled with the circles and data storage of the 

123

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069



DFDs will now represent mailboxes where the processes can leave or collect 

information stored through communication channels, if required and according to the 

type of communication used in the processes (see section 3.1). The graphical 

representation of a data flow diagram is therefore a powerful model in the design phase, 

which represents processes at different levels of nesting, that is, specialization 

and generalization. 

5.1 Case Study: Parallel Generator of Natural Numbers 

The design of a parallel system with message passing that generates natural numbers in 

sequence is shown. This case study has been taken from [15, 16]. The design is done 

using the DFDs. First the context diagram (more general level in the DFD hierarchy), 

then the level 0 DFD diagram which is the decomposition of the context diagram in the 

main processes of the system, along with the communication between them through 

channels and Medium-level DFDs that represent the decomposition of the processes 

identified in the system DFD and finally the design of the DFDs of the primitive 

processes that are those that can no longer be broken down into more process. 

The context DFD of this case study is shown in fig. 6. The process represented by 

the circle in the figure generates consecutive natural numbers starting from the number 

zero, although the user can indicate the starting number. The numbers generated are 

sent through the communication channel represented by the arrow or flow to another 

process called “Display” in charge of receiving them in sequence and printing them on 

the screen. This process is responsible for defining the limit of reception of natural 

numbers. Both the Parallel Generator of Natural Numbers process and the Display 

process are created in a “Parallel Composition of Processes” in concurrent execution 

[17]. The communication between these processes occurs through the communication 

channel in accordance with the principle of rendezvous, see Synchronous 

Communication of section 3.1 for details.  

The Display process of fig. 6, is a primitive process and cannot be broken down into 

more sub-processes. On the contrary, the Parallel Generator of Natural Numbers 

process can be broken down into more sub-processes which are designed through the 

Level 0 DFD of fig. 7. The DFD of level 0, consists of three processes (Prefix (0), Delta 

and Successor or Suc) which in accordance with the logic of operation of the system 

are connected by their respective channels and whose communication between them is 

carried out through of the rendezvous concept. Each process is an active object to which 

a control thread is associated, while a channel is a passive object without its own life. 

Of the three DFD processes of Level 0, the Suc process is a primitive process. Its 

operation consists in increasing by one the value that enters through its Channel b and 

then sending it to the Prefix process through Channel c. The other two processes, Prefix 

(0) and Delta, are processes composed of more processes so we can design their 

corresponding DFDs of Middle Levels (see Fig. 8). 

The level 1 DFD of the Prefix process has two channels, one input (Channel c) and 

one output (Channel a) that connect to the Id process that composes it. The first time 

the Prefix process is executed, it sends the N value provided by the user through its 

output channel. N is the initial natural number. In its next executions the process 

124

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



executes the behavior of its internal process Id (it is said to behave like him). The 

internal process Id is a primitive process. In the level 1, DFD (fig. 8) the Delta process 

has three communication channels, one input channel and two output channels. 

Delta's behavior is as follows: in an infinite execution, the number received by its 

input channel (channel a) is sent by the internal processes (processes Write), which are 

executed in parallel, so that they send through their respective channels output (Channel 

b and Channel d) the data received without any modification. Write processes are 

primitive processes. Finally, the design is completed with the graphic representation of 

the level 2 DFDs of the primitive processes (see table 2). 

 
Fig 6. Context DFD. 

 
Fig 7. Level 0 DFD. 

 
Fig 8. Level 1 DFD (Middle Levels). 

125

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069



6 Conclusions 

A way to design parallel programs using Data Flow Diagrams of the structured design 

of classical software engineering has been proposed. The same graphic symbols of the 

DFD were used by changing their semantics of the structured design by the semantics 

of parallel programming with message passing, so that their uses in the design of a 

parallel system result in a transparent mapping of processes, communication channels, 

geometric parallelism, logical partition of processes, generalization and specialization 

in different levels of nesting that correspond to the different levels of generalization 

and particularization of DFDs (context, system, levels 1, 2, 3, etc ... until reaching 

processes primitives).  

To demonstrate its usefulness, this proposal was used in the parallel design of a 

Natural Number Generator. This application has been programmed in JAVA using a 

particular class library called JPMI based on the process algebra of Hoare or CSP. 

References 

1. Moyano, J.: Programación Paralela - Conceptos y Diseño de Sistemas Distribuidos (2016) 

2. Fujimoto: Parallel and Distributed Simulation Systems. USA, Wiley-Interscience (2000) 

3. Palma-Méndez, J.T., Garrido-Cabrera, M.C., Sánchez, F., Quesada-Arencibia, A.: 

Programación Concurernte. Paraninfo (2003) 

Table 2. Level 2 DFDs (Primitive Processes). 

 

126

Mario Rossainz López, Mireya Tovar Vidal, Nallely Morales Lozada, Jesús Alberto Islas Fuentes

Research in Computing Science 149(4), 2020 ISSN 1870-4069



4. Wilkinson, B., Allen, M.: Parallel programming techniques and applications using 

networked workstations and parallel computers. Prentice Hall (2000) 

5. Salguero, E.: Diseño de Aplicaciones Distribuidas. GitHub Gist (2018) 

6. Martínez, G.E.: Diseño de Sistemas Distribuidos. LWP, Comunidad de 

Programadores   (2019) 

7. Montalvo, O.P., Byron, P.V.: Diseño e Implementación de una aplicación distribuida de 

video bajo demanda basada en la arquitectura cliente-servidor. En: XXV Jornadas en 

Ingeniería Eléctrica y Electrónica, 25, pp. 344–355 (2014) 

8. Sumano, M.A.: Análisis estructurado moderno (2012) 

9. Cillero, M.: Diagrama de flujo de datos (2018) 

10. García, S., Morales, E.: Análisis y Diseño Detallado de Aplicaciones Informáticas de 

Gestión. Madrid, Thomson Paraninfo (2003) 

11. De Amescua-Seco, A.: Análisis y Diseño Estructurado y Orientado a Objetos de Sistemas 

Informáticos. Madrid, McGraw Hill (2003) 

12. Capel, M., Rodriguez, V.S.: Sistemas Concurrentes y Distribuidos. Granada, Copycentro 

Editorial (2012) 

13. Hoare, C.A.R.: Communicating Sequential Processes. London, Prentice Hall (2003) 

14. Kendall & Kendall: Análisis y Diseño de Sistemas, México, Pearson (2011) 

15. Hilderink, G., Broenink, J., Vervoort, W., Bakkers, A.: Communicating Java Threads. IOS 

Press (1999) 

16. Hilderink, G., Broenink, J., Bakkers, A., Schaller, N.C.: Communicating Threads for Java, 

Architectures, Languages and Techniques. IOS Press (2000) 

17. Friborg R.M., Brian V.: PyCSP – Controlled Concurrency. International Journal of 

Information Processing and Management, 1(2), pp. 40–49 (2010) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

127

Use of Data Flow Diagrams for Building Process with Message Passing: A Parallel Design Proposal

Research in Computing Science 149(4), 2020ISSN 1870-4069


